Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chemistry ; 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2308420

ABSTRACT

CRISPR-based biosensing technology has been emerging as a revolutionary diagnostics for many diseases-related biomarkers. In particular, RspCas13d, a newly identified RNA-guided Cas13d ribonuclease derived from Ruminococcus sp., has shown great promise for accurate and sensitive detection of RNA due to its RNA sequence-specific recognition and robust collateral trans-cleavage activity. However, its diagnostic utility is limited to detect nucleic-acid-related biomarkers. To address this limitation, we herein present a proof-of-concept demonstration of a target-responsive CRISPR-Cas13d sensing system for protein biomarkers. Such a system is rationally designed by integrating a Dual-Aptamer-based Transcription Amplification Strategy with CRISPR-Cas13d (DATAS-Cas13d), in which the protein binding initiates the in vitro RNA transcription followed by the activation of RspCas13d. Using a short fluorescent ssRNA as the signal reporter and cardiac troponin I (cTnI) as the model analyte, the DATAS-Cas13d system showed a wide linear range, low detection limit and high specificity for the detection of cTnI in buffer and human serum. Thanks to the facile integration of various bioreceptors into the DATAS-Cas13d system, the method could be adapted to detecting a broad range of clinically relevant protein biomarkers, and thus broaden the medical applications of Cas13d-based diagnostics.

2.
Flora ; 28(1):1-10, 2023.
Article in English | EMBASE | ID: covidwho-2303110

ABSTRACT

Coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) predominantly affects the respiratory system. The COVID-19 pandemic has had devastating effects on the health system and the global economy worldwide. To reduce the worsening impact of the pandemic, various treatment options and vaccines have been developed. Despite these efforts the pandemic could not be stopped because of the single-stranded nature of the virus combined with the lack of proof-reading abilities of the RNA-dependent RNA polymerase (RdRp). This results in a high probability of error in the copying process and consequently, mutations occur. The increase in mutations in SARS-CoV-2 reduced the efficacy of antiviral medicines and vaccines. To fight this problem, studies were conducted on the efficacy and safety of using Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) in the diagnosis and treatment of COVID-19. Initially, discovered in archaea, CRISPR is a gene-editing tool that works by altering specific parts of the genome. In this review, we focused on the efficacy and safety of CRISPR technology in the treatment of COVID-19.Copyright © 2023 Bilimsel Tip Yayinevi. All rights reserved.

3.
Viruses ; 15(3)2023 03 06.
Article in English | MEDLINE | ID: covidwho-2263678

ABSTRACT

The current SARS-CoV-2 pandemic forms a major global health burden. Although protective vaccines are available, concerns remain as new virus variants continue to appear. CRISPR-based gene-editing approaches offer an attractive therapeutic strategy as the CRISPR-RNA (crRNA) can be adjusted rapidly to accommodate a new viral genome sequence. This study aimed at using the RNA-targeting CRISPR-Cas13d system to attack highly conserved sequences in the viral RNA genome, thereby preparing for future zoonotic outbreaks of other coronaviruses. We designed 29 crRNAs targeting highly conserved sequences along the complete SARS-CoV-2 genome. Several crRNAs demonstrated efficient silencing of a reporter with the matching viral target sequence and efficient inhibition of a SARS-CoV-2 replicon. The crRNAs that suppress SARS-CoV-2 were also able to suppress SARS-CoV, thus demonstrating the breadth of this antiviral strategy. Strikingly, we observed that only crRNAs directed against the plus-genomic RNA demonstrated antiviral activity in the replicon assay, in contrast to those that bind the minus-genomic RNA, the replication intermediate. These results point to a major difference in the vulnerability and biology of the +RNA versus -RNA strands of the SARS-CoV-2 genome and provide important insights for the design of RNA-targeting antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Gene Editing/methods , RNA, Viral/genetics , RNA, Viral/metabolism
4.
Viruses ; 14(2)2022 02 14.
Article in English | MEDLINE | ID: covidwho-1687053

ABSTRACT

The SARS-CoV-2 pandemic has urged the development of protective vaccines and the search for specific antiviral drugs. The modern molecular biology tools provides alternative methods, such as CRISPR-Cas and RNA interference, that can be adapted as antiviral approaches, and contribute to this search. The unique CRISPR-Cas13d system, with the small crRNA guide molecule, mediates a sequence-specific attack on RNA, and can be developed as an anti-coronavirus strategy. We analyzed the SARS-CoV-2 genome to localize the hypothetically best crRNA-annealing sites of 23 nucleotides based on our extensive expertise with sequence-specific antiviral strategies. We considered target sites of which the sequence is well-conserved among SARS-CoV-2 isolates. As we should prepare for a potential future outbreak of related viruses, we screened for targets that are conserved between SARS-CoV-2 and SARS-CoV. To further broaden the search, we screened for targets that are conserved between SARS-CoV-2 and the more distantly related MERS-CoV, as well as the four other human coronaviruses (OC43, 229E, NL63, HKU1). Finally, we performed a search for pan-corona target sequences that are conserved among all these coronaviruses, including the new Omicron variant, that are able to replicate in humans. This survey may contribute to the design of effective, safe, and escape-proof antiviral strategies to prepare for future pandemics.


Subject(s)
Computer Simulation , Genome, Viral , RNA, Viral/genetics , SARS-CoV-2/genetics , CRISPR-Cas Systems , Humans , Spike Glycoprotein, Coronavirus/genetics
5.
ACS Sens ; 6(11): 3957-3966, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1493024

ABSTRACT

The development of an extensive toolkit for potential point-of-care diagnostics that is expeditiously adaptable to new emerging pathogens is of critical public health importance. Recently, a number of novel CRISPR-based diagnostics have been developed to detect SARS-CoV-2. Herein, we outline the development of an alternative CRISPR nucleic acid diagnostic utilizing a Cas13d ribonuclease derived from Ruminococcus flavefaciens XPD3002 (CasRx) to detect SARS-CoV-2, an approach we term SENSR (sensitive enzymatic nucleic acid sequence reporter) that can detect attomolar concentrations of SARS-CoV-2. We demonstrate 100% sensitivity in patient-derived samples by lateral flow and fluorescence readout with a detection limit of 45 copy/µL. This technology expands the available nucleic acid diagnostic toolkit, which can be adapted to combat future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleic Acid Amplification Techniques , RNA, Viral , Ruminococcus
SELECTION OF CITATIONS
SEARCH DETAIL